Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions

نویسندگان

  • Shohei Shimizu
  • Kenneth Bollen
چکیده

Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. We first propose a new linear non-Gaussian acyclic structural equation model with individual-specific effects that are sometimes the source of confounding. Thus, modeling individual-specific effects as latent variables allows latent confounding to be considered. We then propose an empirical Bayesian approach for estimating possible causal direction using the new model. We demonstrate the effectiveness of our method using artificial and real-world data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model

Structural equation models and Bayesian networks have been widely used to analyze causal relations between continuous variables. In such frameworks, linear acyclic models are typically used to model the data-generating process of variables. Recently, it was shown that use of non-Gaussianity identifies the full structure of a linear acyclic model, that is, a causal ordering of variables and thei...

متن کامل

Pairwise likelihood ratios for estimation of non-Gaussian structural equation models

We present new measures of the causal direction, or direction of effect, between two non-Gaussian random variables. They are based on the likelihood ratio under the linear non-Gaussian acyclic model (LiNGAM). We also develop simple first-order approximations of the likelihood ratio and analyze them based on related cumulant-based measures, which can be shown to find the correct causal direction...

متن کامل

A direct method for estimating a causal ordering in a linear non-Gaussian acyclic model

Structural equation models and Bayesian networks have been widely used to analyze causal relations between continuous variables. In such frameworks, linear acyclic models are typically used to model the datagenerating process of variables. Recently, it was shown that use of non-Gaussianity identifies a causal ordering of variables in a linear acyclic model without using any prior knowledge on t...

متن کامل

Joint estimation of linear non-Gaussian acyclic models

A linear non-Gaussian structural equation model called LiNGAM is an identifiable model for exploratory causal analysis. Previous methods estimate a causal ordering of variables and their connection strengths based on a single dataset. However, in many application domains, data are obtained under different conditions, that is, multiple datasets are obtained rather than a single dataset. In this ...

متن کامل

Causal Discovery for Linear Non-Gaussian Acyclic Models in the Presence of Latent Gaussian Confounders

LiNGAM has been successfully applied to casual inferences of some real world problems. Nevertheless, basic LiNGAM assumes that there is no latent confounder of the observed variables, which may not hold as the confounding effect is quite common in the real world. Causal discovery for LiNGAM in the presence of latent confounders is a more significant and challenging problem. In this paper, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014